
Ada was first released in 1983 with high
ambitions. Unfortunately, it came

across as large and complicated. Its
approach to multitasking, although innov-
ative, proved unsuccessful. It was built on
the rendezvous concept [1], which is ele-
gant in theory, but was an unnecessary
departure from the long, practical tradi-
tion with threads and shared objects as
separate, interacting entity types. Ada 95
remedied this problem and further
evolved into Ada 2005. Now, the multi-
tasking facilities in Ada are conceptually
mainstream, at the same time much less
error prone than in other languages.

This article describes Ada multitasking
as it now exists. It is intended for develop-
ers of multithreaded systems in other lan-
guages and for those who may consider
redesigning systems to take advantage of
multi-core chips and other types of multi-
processors. Programmers in some lan-
guages use POSIX threads [2, 3], which
are created by routines with a standardized
interface. Other routines operate on
mutex variables in order to give threads
exclusive access to shared data. Support
that is built into the language syntax as in
Ada and Java is safer and easier on the
programmer because it abstracts low-level
operations such as the mutex manipula-
tion. A multitask Ada program will run
under symmetric multiprocessing.

From the beginning, Ada was designed
to meet the predictability and reliability
requirements of dependable systems.
Over time, those kinds of systems, which
are typically embedded real-time systems,
formed Ada’s niche. Ada supports hard
real time. In hard real time, computations
must finish by certain, absolute deadlines
to avoid dire consequences. If an appro-
priate scheduling algorithm is used, a set
of periodic tasks provably meets its dead-
lines. Ada supports rate-monotonic and
earliest deadline first scheduling.

There is an important category of sys-
tems that have no conflicting, hard dead-
lines, but still need to be robust. Many of
these systems must perform a periodic
function reliably. For example, a cruise
controller must adjust the throttle with

consistent intervals for a smooth ride, but
without absolute deadlines. A building
monitoring system may need to check
every one of hundreds of sensors every
two seconds, but there are no dire conse-
quences if the interval is a little longer.
Interactive systems need to respond to
human input in a consistent and timely
manner, but without hard deadlines.

Ada was always intended for high-
integrity systems while Java was originally
meant for Windows programming and
applets. The real-time specification for
Java (RTSJ [4, 5]) does not make the lan-
guage less error-prone1. It is easy to make
the case that Ada is much safer than Java
in this respect [6, 7]. Unlike Java, but like
C++, Ada is a hybrid language; you can
program entirely without classes. This can
be important in hard, real-time environ-
ments where some object-oriented fea-
tures may be deemed too inefficient.

This article focuses on Ada’s support
for intuitive multitasking without conflict-
ing, absolute deadlines. This intuitive
approach can produce elegant, simple,
and efficient programs with tasks mod-
eled on entities in the problem domain [8,
9]. A job that is processed in a flexible
manufacturing system (FMS) is an exam-
ple of such an entity [8, 10]. Flexible man-
ufacturing differs from production lines.
Each job task waits for access to one
workstation at a time and for access to
devices such as forklifts. The task
describes the life of a job while resources
such as the workstations and the devices
can be modeled by means of protected
objects. Other aspects of the problem
also map directly onto Ada features. The
following are various language features
and examples of how to use them in intu-
itive multitasking.

Protected Objects
A protected object is a data structure that
is encapsulated to make it task safe, which
means that multiple tasks can operate on it
without risk of conflict; each operation on
the object always finishes before the next
one starts. Protected objects have lock
variables, which are inaccessible to the

programmer. The compiler inserts the
necessary operations on the locks.

A protected type can have protected
operations of three kinds: functions, proce-
dures, and entries. These are declared in the
protected-type specification as in this
example:

protected type X is
function F1() return Type1;
procedure P1 ();
entry Acquire (…);

private
-- Attribute variables
-- Private operations including

interrupt handlers
end X;

You can also declare a single protected
object. The following are differences
between protected functions, protected
procedures, and entries:
• Protected functions are read-only. They

cannot change the protected object’s
attributes and are subject to a read
lock; simultaneous function calls on a
given object are allowed, but not dur-
ing a procedure or entry call on the
object.

• Protected procedures can change the
attribute values. They are subject to a
write lock; only one procedure (or
entry) call at a time is allowed on a
given object, and not during any func-
tion call.

• Like protected procedures, entries can
change attribute-variable values and
are subject to the write lock. In addi-
tion, each entry has a barrier condi-
tion, which must be true for a call on
the entry to proceed. For example, an
entry Acquire that is to be performed
only when the number of items avail-
able is greater than zero can be speci-
fied in the body of the protected type
as follows:

entry Acquire (...) when Available > 0 is ...

If a task calls Acquire when the
attribute variable Available is equal to zero,
it is queued. Each protected object has

Intuitive Multitasking in Ada 2005

As multiprocessors become common, more software must be multithreaded in order to take advantage of the added process-
ing power. Programming in a language with multithreaded support is easier and less error-prone than with stand-alone thread
packages. Multitasking in Ada 2005 builds on the same concepts as Java but is considerably safer.

Dr. Bo I. Sandén
Colorado Technical University

12 CROSSTALK The Journal of Defense Software Engineering August 2006

August 2006 www.stsc.hill.af.mil 13

one queue per entry. This is different from
Java, where each synchronized object has
a single wait set. Otherwise, a barrier
works quite similarly to a wait loop while
(condition) wait(), placed at the very begin-
ning of a synchronized operation in Java.

Protected objects are similar to Java’s
synchronized objects, but much less prone
to mistakes and misunderstandings on the
part of the programmer [7]. All the oper-
ations are protected while in Java. In Java,
it is up to the programmer to make select-
ed operations synchronized.

Use
Protected objects represent shared
resources in the problem domain such as
workstations and forklifts in the FMS
example. A job task acquires a forklift by
the call Forklift.Acquire on a protected
object Forklift. It releases the forklift by
calling Forklift.Release. Release is a protect-
ed procedure that increments the variable
Available and opens the barrier for other
job tasks.

While a job is waiting for a resource, its
task is queued on a protected entry. This
means that Acquire’s task queue models
the queue of waiting jobs in the factory.
Ada gives the programmer provisions for
managing such a queue. For example, a
task can be removed from the queue if
necessary [10].

Requeuing
The Java style with a wait loop as part of
the body of a synchronized operation is
flexible. For example, a synchronized
method in Java can have multiple wait
loops; a thread can effectively execute the
synchronized operation in segments sepa-
rated by calls to wait where the thread
releases its object lock [7]. Each time it is
reactivated from the wait set, it enters a
new segment with the lock re-established.

The requeue statement in Ada
achieves the same effect. It allows a task
that is executing an entry to suspend itself
and place itself on the queue of the same
or another entry. The syntax for requeuing
to an entry called Wait is as follows:

requeue Wait;

There are no parameters. The requeuing
entry must have the same parameters as
the entry in whose body the requeue state-
ment appears.

Use
As mentioned previously, protected
objects with operations such as Acquire
and Release can represent resources in the
problem domain. Requeuing is the only

way to handle a delay during the resource
allocation. A high-priority entity may force
an entity holding a resource to relinquish
it. The high-priority task can requeue itself
while the lower-priority task takes appro-
priate measures to relinquish the resource
and call Release [8].

Protected Interfaces
Java and CORBA popularized the inter-
face as a syntactic concept [11]. In Ada
2005, a type can implement any number of
interfaces in addition to extending a base
type. As in Java, an interface is very simi-
lar to an abstract class without data where
all the operations are abstract2.

In Ada 2005, protected types can
implement protected interfaces 3. Like other
interfaces, they allow polymorphism. This
addresses, to a degree, an awkwardness in
Ada 95, which introduced both protected
types and extensible types, but did not
combine the two by allowing protected
types to be extended [12].

If a number of protected types imple-
ment the same protected interface S, you
can reference their instances by means of
access variables with a target of type
S’Class. Ada distinguishes between a type
such as S and the polymorphic, class wide
type S’Class, which can refer to instances
of S and its descendants. An access vari-
able is essentially a pointer to an object of
the target type.

Use
In a program that deals with devices of
different types where each type needs its
own driver, you could declare a protected
interface with an operation Initialize as in
the following example:

type Device_Handler is protected inteface;
procedure Initialize (D: in out Device_
Handler) is abstract;

The interface is implemented by various
device-handler types as Device_Type1 in
this example:

protected type Device_Type1 (Device_
Number : Natural) is

new Device_Handler with
procedure Initialize;

. . .
end Device_Type1;

The body of the protected type contains
the logic of the procedure Initialize for this
particular device type. Device_Number is a
discriminant, which allows you to give
unique information such as a device num-
ber to each instance.

You can now declare an array of
pointers to device drivers as follows:

Driver_List : array (…) of access
Device_Handler’Class;

A loop such as the following invokes the
initialization procedure appropriate for
each array element:

for D in Driver_List’Range loop
Driver_List(D).Initialize;

end loop;

For each value of D, the call
Driver_List(D).Initialize binds at runtime to
the Initialize procedure appropriate for the
type of device at Driver_List(D).

Asynchronous Transfer of
Control
Like RTSJ, Ada provides for asynchro-
nous transfer of control (ATC). With
ATC, the programmer can arrange for a
computation to be cut short if a triggering
event should occur before the computa-
tion is complete. A common example is an
algorithm that iteratively improves an
approximate result until it converges to a
value with a certain precision. If the cal-
culation does not converge within a cer-
tain time limit, a real-time system may
need to terminate it and use the best
approximation available. The trigger in
this case is the event that the time limit is
reached.

Ada’s ATC syntax is considerably sim-
pler than that in RTSJ [4, 5]. Ada imple-
ments ATC by means of abortable tasks.
It uses an asynchronous select statement such
as the following:

select delay until Next_Reading;
then abort

-- “Abortable sequence”
end select;

“Protected objects are
similar to Java’s

synchronized objects,
but much less prone to

mistakes and
misunderstandings on

the part of
the programmer.”

Intuitive Multitasking in Ada 2005

Ada 2005

14 CROSSTALK The Journal of Defense Software Engineering August 2006

This works as follows: The abortable
sequence starts. If it has not ended by
the time Next_Reading, it is aborted.

You can also express the trigger in
terms of elapsed central processing unit
time. This is useful in real-time systems
with hard deadlines, where each periodic
task is given a maximum amount of
processor time per period. Finally, the
triggering event can be the acceptance of
a certain call on a protected entry. The
following example illustrates the last case.

Use
In the FMS, each workstation has an
input stand, a tool, and an output stand.
A job can sit on the output stand of a
workstation and wait for its next work-
station to become available. The job
may still be on the output stand when
the next job is finished in the tool and
needs the stand. In that situation, the
first job must clear the stand and be
staged in a storage area; the job task
must be prepared to handle whichever
comes first of two possible events: the
next workstation becomes available, or
the job is ordered to clear the stand.
Both are entry calls. This is expressed by
the following statement:

select
WS.Request;

then abort
X.Clear;
-- “Additional statements”
-- (Stage job in storage)

end select;

The trigger, WS.Request, is the request for
the next workstation, which is accepted
when that workstation becomes available.
The abortable sequence starts with the call
X.Clear, which is accepted when the next
job is done in the tool. This makes for a
race between those two events: WS.Request
is accepted and X.Clear is accepted. One
will happen first, and then the other one is
aborted. If X.Clear is accepted, the call
WS.Request is aborted and the additional
statements execute. If WS.Request is
accepted, the call X.Clear is aborted and
the additional statements never execute.
The ATC logic arbitrates the outcome of
the events even if they happen at practi-
cally the same time.

Interrupt Handlers and
Timing Events
As a language intended for embedded sys-
tems from the beginning, Ada allows the
programmer to specify interrupt handlers
(RTSJ introduces interrupt handling in
Java). In Ada 95 and on, the handlers are
protected procedures.

Ada 2005 introduces timing events as a
means to define code to be executed at a
certain time. They are similar to
OneShotTimers, which are a type of asyn-
chronous events in RTSJ [4, 5]. A timing
event can be set to go off either at a cer-
tain time or after a certain interval and can
be canceled. When the event goes off, it
causes a handler to execute. Like interrupt
handlers, timing-event handlers are pro-
tected procedures.

As with interrupt handlers, the system
executes the timing-event handlers; the pro-
grammer does not need to supply a task.
This simplifies things. In earlier Ada ver-
sions, you needed tasks with delay statements
to achieve the effect of a timing event.

Use
A car driver can manipulate the driver’s
side window by means of a lever on the
door. Figure 1 is a fragment of a state
model of the window. It starts in state
Still. By pushing the lever down, the driver
puts the window in state Moving_Down.
Releasing the lever takes the window back
to Still. If the driver holds the lever down
for Time_Amount milliseconds, the win-
dow transitions to the state Auto_Down,
where it continues down even after the
driver releases the lever.

We can define a timing event
Auto_Time to capture this. It occurs when
the window has spent Time_Amount mil-
liseconds in Moving_Down. It causes the
window to enter state Auto_Down.

The handlers for the interrupts
Lever_Down and Release and the timing
event Auto_Time are protected procedures
in Window_Control, which is a state-
machine protected object [8, 9]. It main-
tains the state of the window in the vari-
able Wstate of the enumerated type
State_Type. Wstate’s initial value is Still. The
following are type and instance declara-
tions and part of the specification of
Window_Control:

type State_Type is
(Still, Moving_Down, Auto_Down,);

Auto_Time : Timing_Event;
Time_Amount : constant Time_Span :=
protected Window_Control is
private

procedure Lever_Down;
procedure Release;
procedure Time_Out

(Event : in out Timing_Event);
Wstate : State_Type := Still;

end Window_Control;

The interrupt and event handlers need not
be visible from other parts of the software
so they can be declared private. I am leaving
out statements that tie the interrupt handlers
to certain interrupts. The protected body
contains the logic of the procedures [8].

In a state machine-protected object
such as Window_Control, the timing-event
handler fits in particularly well among the
various interrupt handlers. In this exam-
ple, where there is no real computation,
you need no task at all. A pre-Ada 2005
solution would require a task with a delay
statement that calls Time_Out when the
delay expires.

Conclusion
In the mid-80s, soon after Ada 83 first
appeared, programmers switched from
secure Pascal-like languages such as Ada
to insecure C-like languages [13]. Had Ada
been an immediate success, things might
have gone differently. The original tasking
model worked against Ada. That awk-
wardness is now long gone. Tasking in
Ada 2005 is conceptually similar to Java
threading, but much safer. Those respon-
sible for critical software development no
longer have an excuse to gamble on lan-
guages that leave ample room for pro-
grammer mistakes.u

References
1. Burns, A., and A.J. Wellings. Concur-

rency in Ada. 2nd ed. Cambridge
University Press, 1998.

2. Nichols, B., D. Buttlar, and J. Proulx
Farrell. Pthreads Programming: A
POSIX Standard for Better Multipro-
cessing. O’Reilly and Associates, 1996.

3. Butenhof, D.R. Programming With
POSIX Threads. Addison-Wesley, 1997.

4. Bollella, G., and J. Gosling. “The Real-

Still g_Down _ nStillStillStill i Doving_DownMoving_DownMMoviMMMMM A t DAuto_DownAuto_DownAA

Figure 1: State Diagram Fragment of the Car Window

Intuitive Multitasking in Ada 2005

August 2006 www.stsc.hill.af.mil 15

Time Specification for Java.” IEEE
Computer 33:6 (2000): 47-54.

5. Wellings, A.J. Concurrent and Real-
Time Programming in Java. John
Wiley & Sons, 2004.

6. Nilsen, K. “Applying RAMS Principles
to the Development of a Safety-Crit-
ical Java Specification.” CrossTalk
Feb. 2006 <www.stsc.hill.af.mil/cross
talk/2006/02/0602Nilsen. html>.

7. Sandén, B.I. “Coping With Java Threads.”
IEEE Computer 37:4 (2004): 20-27.

8. Sandén, B.I. Multithreading. Colorado
Technical University, 2006 <http://
home.ear thl ink.net/~bosanden/
Multithreading>.

9. Sandén, B.I., and J. Zalewski. “Design-
ing State-Based Systems With Entity-
Life Modeling.” Journal of Systems
and Software 79:1 (2006): 69-78.

10. Carter, J.R., and B.I. Sandén. “Practical
Uses of Ada 95 Concurrency Features.”
IEEE Concurrency 6:4 (1998): 47-56.

11. Siegal, J. “OMG Overview: CORBA
and the OMA in Enterprise Comput-
ing.” CACM 41:10 (1998): 37-43.

12. Wellings, A.J., R.W. Johnson, B.I.
Sandén, J. Kienzle, T. Wolf, and S.
Michell. “Integrating Object-Oriented
Programming and Protected Objects
in Ada 95.” ACM TOPLAS 22:3
(2000): 506-539.

13. Brinch Hansen, P. “Java’s Insecure
Parallelism.” ACM SIGPLAN Notices
34:4 (1999): 38-45.

Notes
1. A safety-critical Java specification is

being proposed that carefully defines a
small subset of Java and RTSJ to meet
stringent reliability, availability, main-
tainability, and safety requirements [6].

2. Ada interfaces can also have null oper-
ations, which are concrete but have no
effect.

3. A synchronized interface can be imple-
mented by protected types and tasks.

About the Author

Bo I. Sandén, Ph.D.,
has 15 years experience as
a software developer and
20 years teaching sofware
engineering. He is now a
professor of computer

science at Colorado Technical University
in Colorado Springs. Sandén’s main re-
search interest is language support for
multithreading and the design of multi-
thread software. He has a master of sci-
ence in engineering physics from the Lund
Institute of Technology, Sweden, and a
doctorate in computer science from the
Royal Institute of Technology, Stockholm.

Colorado Technical University
4435 North Chestnut ST
Colorado Springs, CO 80907-3896
Phone: (719) 531-9045
Fax: (719) 598-3740
E-mail: bsanden@acm.org

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEW TWIST ON TECHNOLOGY

MAR2006 c PSP/TSP
APR2006 c CMMI
MAY2006 c TRANSFORMING

JUNE2006 c WHY PROJECTS FAIL

JULY2006 c NET-CENTRICITY

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

Agile Development
February 2007

Submission Deadline: September 18

COTS Integration
March 2007

Submission Deadline: October 16

Acquisition
April 2007

Submission Deadline: November 15

CrossTalk, available on the
Inter We accept article submissions on all
softw p y , g th Letters to the Editor and BackTalk.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful
to others, CrossTalk can get the word out. We are specifically looking for

chedule for three areas of emphasis we are looking for:

